BACKGROUND

Sapelo Island is one of Georgia’s barrier islands and was the site of at least one Mission Period Native American Settlement and Interaction on Sapelo Island, Georgia. During the summer of 2016, we decided to build upon these previous results and test excavations for a GSSI SIR 3000 with a 400MHz antenna to investigate a selected area north of previous test excavations. His results and interpretations of the new geophysical surveys are presented here.

Previous Research

The geophysical surveys and test excavations conducted during the summer of 2016 and spring of 2017 have set the stage for continued research. The results of the 2016 GPR and gradiometry surveys showed numerous anomalies including potentially representing structural features across the survey area. The geophysical surveys were conducted in a systematic manner within and around Grids II, III, IV, and V. Anomalies located in Grids II, IV, and V were compared over excavations located in Grids II, III, and V (Figure 24). Multiple test units were excavated in the spring of 2017 to ground-truth the geophysical results. The results of the GPR and gradiometry surveys as well as ground-truthing research are presented in this section.

RESULTS

During the summer of 2016, we decided to build upon these previous results and test excavations for a GSSI SIR 3000 with a 400MHz antenna to investigate a selected area north of previous test excavations. His results and interpretations of the new geophysical surveys are presented here.

The geophysical surveys and test excavations conducted during the summer of 2016 and spring of 2017 have set the stage for continued research. The results of the 2016 GPR and gradiometry surveys showed numerous anomalies including potentially representing structural features across the survey area. The geophysical surveys were conducted in a systematic manner within and around Grids II, III, IV, and V. Anomalies located in Grids II, IV, and V were compared over excavations located in Grids II, III, and V (Figure 24). Multiple test units were excavated in the spring of 2017 to ground-truth the geophysical results. The results of the GPR and gradiometry surveys as well as ground-truthing research are presented in this section.

The geophysical surveys and test excavations conducted during the summer of 2016 and spring of 2017 have set the stage for continued research. The results of the 2016 GPR and gradiometry surveys showed numerous anomalies including potentially representing structural features across the survey area. The geophysical surveys were conducted in a systematic manner within and around Grids II, III, IV, and V. Anomalies located in Grids II, IV, and V were compared over excavations located in Grids II, III, and V (Figure 24). Multiple test units were excavated in the spring of 2017 to ground-truth the geophysical results. The results of the GPR and gradiometry surveys as well as ground-truthing research are presented in this section.

The geophysical surveys and test excavations conducted during the summer of 2016 and spring of 2017 have set the stage for continued research. The results of the 2016 GPR and gradiometry surveys showed numerous anomalies including potentially representing structural features across the survey area. The geophysical surveys were conducted in a systematic manner within and around Grids II, III, IV, and V. Anomalies located in Grids II, IV, and V were compared over excavations located in Grids II, III, and V (Figure 24). Multiple test units were excavated in the spring of 2017 to ground-truth the geophysical results. The results of the GPR and gradiometry surveys as well as ground-truthing research are presented in this section.

The geophysical surveys and test excavations conducted during the summer of 2016 and spring of 2017 have set the stage for continued research. The results of the 2016 GPR and gradiometry surveys showed numerous anomalies including potentially representing structural features across the survey area. The geophysical surveys were conducted in a systematic manner within and around Grids II, III, IV, and V. Anomalies located in Grids II, IV, and V were compared over excavations located in Grids II, III, and V (Figure 24). Multiple test units were excavated in the spring of 2017 to ground-truth the geophysical results. The results of the GPR and gradiometry surveys as well as ground-truthing research are presented in this section.

The geophysical surveys and test excavations conducted during the summer of 2016 and spring of 2017 have set the stage for continued research. The results of the 2016 GPR and gradiometry surveys showed numerous anomalies including potentially representing structural features across the survey area. The geophysical surveys were conducted in a systematic manner within and around Grids II, III, IV, and V. Anomalies located in Grids II, IV, and V were compared over excavations located in Grids II, III, and V (Figure 24). Multiple test units were excavated in the spring of 2017 to ground-truth the geophysical results. The results of the GPR and gradiometry surveys as well as ground-truthing research are presented in this section.

The geophysical surveys and test excavations conducted during the summer of 2016 and spring of 2017 have set the stage for continued research. The results of the 2016 GPR and gradiometry surveys showed numerous anomalies including potentially representing structural features across the survey area. The geophysical surveys were conducted in a systematic manner within and around Grids II, III, IV, and V. Anomalies located in Grids II, IV, and V were compared over excavations located in Grids II, III, and V (Figure 24). Multiple test units were excavated in the spring of 2017 to ground-truth the geophysical results. The results of the GPR and gradiometry surveys as well as ground-truthing research are presented in this section.